skip to main content


Search for: All records

Creators/Authors contains: "Cole, Kevin D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The long-term goal of this work is to predict and control the microstructure evolution in metal additive manufacturing processes. In pursuit of this goal, we developed and applied an approach which combines physics-based thermal modeling with data-driven machine learning to predict two important microstructure-related characteristics, namely, the meltpool depth and primary dendritic arm spacing in Nickel Alloy 718 parts made using the laser powder bed fusion (LPBF) process. Microstructure characteristics are critical determinants of functional physical properties, e.g., yield strength and fatigue life. Currently, the microstructure of LPBF parts is optimized through a cumbersome build-and-characterize empirical approach. Rapid and accurate models for predicting microstructure evolution are therefore valuable to reduce process development time and achieve consistent properties. However, owing to their computational complexity, existing physics-based models for predicting the microstructure evolution are limited to a few layers, and are challenging to scale to practical parts. This paper addresses the aforementioned research gap via a novel physics and data integrated modeling approach. The approach consists of two steps. First, a rapid, part-level computational thermal model was used to predict the temperature distribution and cooling rate in the entire part before it was printed. Second, the foregoing physics-based thermal history quantifiers were used as inputs to a simple machine learning model (support vector machine) trained to predict the meltpool depth and primary dendritic arm spacing based on empirical materials characterization data. As an example of its efficacy, when tested on a separate set of samples from a different build, the approach predicted the primary dendritic arm spacing with root mean squared error ≈ 110 nm. This work thus presents an avenue for future physics-based optimization and control of microstructure evolution in LPBF. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Purpose The purpose of this paper is to develop, apply and validate a mesh-free graph theory–based approach for rapid thermal modeling of the directed energy deposition (DED) additive manufacturing (AM) process. Design/methodology/approach In this study, the authors develop a novel mesh-free graph theory–based approach to predict the thermal history of the DED process. Subsequently, the authors validated the graph theory predicted temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED process was simulated using the graph theory approach, and the thermal history predictions were validated based on the data from the thermocouples. Findings The temperature trends predicted by the graph theory approach have mean absolute percentage error of approximately 11% and root mean square error of 23°C when compared to the experimental data. Moreover, the graph theory simulation was obtained within 4 min using desktop computing resources, which is less than the build time of 25 min. By comparison, a finite element–based model required 136 min to converge to similar level of error. Research limitations/implications This study uses data from fixed thermocouples when printing thin-wall DED parts. In the future, the authors will incorporate infrared thermal camera data from large parts. Practical implications The DED process is particularly valuable for near-net shape manufacturing, repair and remanufacturing applications. However, DED parts are often afflicted with flaws, such as cracking and distortion. In DED, flaw formation is largely governed by the intensity and spatial distribution of heat in the part during the process, often referred to as the thermal history. Accordingly, fast and accurate thermal models to predict the thermal history are necessary to understand and preclude flaw formation. Originality/value This paper presents a new mesh-free computational thermal modeling approach based on graph theory (network science) and applies it to DED. The approach eschews the tedious and computationally demanding meshing aspect of finite element modeling and allows rapid simulation of the thermal history in additive manufacturing. Although the graph theory has been applied to thermal modeling of laser powder bed fusion (LPBF), there are distinct phenomenological differences between DED and LPBF that necessitate substantial modifications to the graph theory approach. 
    more » « less
  3. The objective of this work is to predict a type of thermal-induced process failure called recoater crash that occurs frequently during laser powder bed fusion (LPBF) additive manufacturing. Rapid and accurate thermomechanical simulations are valuable for LPBF practitioners to identify and correct potential issues in the part design and processing conditions that may cause recoater crashes. In this work, to predict the likelihood of a recoater crash (recoater contact or impact) we develop and apply a computationally efficient thermomechanical modeling approach based on graph theory. The accuracy and computational efficiency of the approach is demonstrated by comparison with both non-proprietary finite element analysis (Abaqus), and a proprietary LPBF simulation software (Autodesk Netfabb). Based on both numerical (verification) and experimental (validation) studies, the proposed approach is found to be 5 to 6 times faster than the non-proprietary finite element modeling and has the same order of computational time as a commercial simulation software (Netfabb) without sacrificing prediction accuracy. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract The objective of this work is to provide experimental validation of the graph theory approach for predicting the thermal history in additively manufactured parts that was recently published in these transactions. In the present paper the graph theory approach is validated with in-situ infrared thermography data in the context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize this objective through the following three tasks. First, two types of test parts (stainless steel) are made in two corresponding build cycles on a Renishaw AM250 LPBF machine. The intent of both builds is to influence the thermal history of the part by changing the cooling time between melting of successive layers, called interlayer cooling time. Second, layer-wise thermal images of the top surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the thermal imaging data obtained during the two builds were used to validate the graph theory-predicted surface temperature trends. Furthermore, the surface temperature trends predicted using graph theory are compared with results from finite element analysis. As an example, for one the builds, the graph theory approach accurately predicted the surface temperature trends to within 6% mean absolute percentage error, and approximately 14 Kelvin root mean squared error of the experimental data. Moreover, using the graph theory approach the temperature trends were predicted in less than 26 minutes which is well within the actual build time of 171 minutes. 
    more » « less
  7. Abstract

    The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements.

     
    more » « less
  8. The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements. 
    more » « less